ROUND I : Definitions

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Let a non-prime positive integer be written as the product of its prime factors. The number is a Wocomal number iff the sum of those prime factors is a perfect square. The smallest Wocomal number is 4 because $4=2 \times 2$ and $2+2$ is a perfect square. What is the next smallest Wocomal number?
2. We can devise a shorthand notation for large positive integers by letting d_{n} stand for the occurrence of the digit d, n consecutive times. For example, $1_{4} 9_{5} 8_{3} 6_{2}$ denotes
11119999988866 . Find x, y, and z if $2_{x} 3_{y} 5_{z}+3_{z} 5_{x} 2_{y}=5_{3} 7_{2} 8_{3} 5_{1} 7_{3}$.
3. Consider a collection of piles of blocks consisting of one pile of 8 blocks, one pile of 5 blocks, and one pile of 2 blocks. Such a collection, C_{1}, is expressed as $(8,5,2)$ where the piles are listed in non-increasing order. Obtain a new collection, C_{2}, by harvesting C_{1}, where harvesting is defined to mean remove one block from each pile to form a new pile. Thus $C_{2}=(7,4,3,1)$. If C_{2} is harvested, $C_{3}=(6,4,3,2)$. Starting from $C_{1}=(10,6,3)$, determine C_{100}.

ANSWERS

$(1 \mathrm{pt}) 1$. \qquad
(2 pts) 2. $x=\quad y=\quad z=$
(3 pts) 3. \qquad
Algonquin, Auburn, Shrewsbury

ROUND II: Algebra 1, open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $\frac{(n-1)+n+(n+1)}{n}=\frac{2001+x+2003}{x}$, where $\mathrm{n} \neq 0$ and $\mathrm{x} \neq 0$, find x .
2. X and Y can run around a one mile loop route in 6 and 10 minutes respectively. If they start at the same place at the same time and go in opposite directions at these constant speeds, how long in minutes after starting will they meet?
3. Solve this inequality for k : $2-3 k \leq 2 k-3 \leq k+1$

ANSWERS
$(1 \mathrm{pt}) 1$.
(2 pts) 2. min.
(3 pts) 3.
Clinton, St. John's, Worcester Academy

ROUND III: Problem solving

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find all whole numbers such that the number increased by the sum of its digits equals 93 .
2. A sequence of fractions is Fibonacci if and only if any two successive fractions have the following form.:

$$
\ldots, \frac{m}{p}, \frac{p}{m+p}, \ldots
$$

If the 9 th term of a Fibonacci fraction sequence is $\frac{21}{34}$, find the first term.
3. A square hole is 2 feet on a side. Laura has a rectangular piece of wood 18 inches by 32 inches. How can she cut the rectangle into two pieces involving only right angles and have them fit the square hole exactly? Show how to make the cuts on the rectangle like this in the answer space. Include numbers for dimensions of the pieces!

ANSWERS
$(1 \mathrm{pt}) 1$. \qquad $(3 \mathrm{pts}) 3$.
(2 pts) 2.
Auburn, Shrewsbury, Worcester Academy

ROUND IV: Sequences and series

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the 18 th term of the arithmetic progression $x, x+3 a, x+6 a, \ldots$
2. The first three terms of a geometric progression are, in order, $\mathrm{x}+1,2 \mathrm{x}$, and $2 \mathrm{x}+3$. Find all possible values of x.
3. Consider this tiling pattern with the first three figures shown. Find a simplified quadratic polynomial expression for the number of tiles that would be in the nth figure.

ANSWERS
(1pt) 1. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Auburn, Clinton, Hudson

ROUND V: Matrices

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $\left[\begin{array}{cc}3 & 2 \\ -6 & 1\end{array}\right] \cdot\left[\begin{array}{l}a \\ 4\end{array}\right]=\left[\begin{array}{c}-7 \\ 34\end{array}\right]$, find a.
2. If $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 3\end{array}\right]$ and $B=\left[\begin{array}{c}x+1 \\ y\end{array}\right]$, find x and y such that $A B=3 B$.
3. A general form equation for a circle is $x^{2}+y^{2}+D x+E y+F=0$, where D, E, and F are constants. If these points, $(-2,3),(6,-5)$, and $(0,7)$, lie on a circle, fill in the missing numbers in the matrix equation like this in the answer section whose solution would be D, E, and F.

$$
[]\left[\begin{array}{l}
D \\
E \\
F
\end{array}\right]=[]
$$

ANSWERS

$(1 \mathrm{pt}) 1$.
(2 pts) 2. $\quad x=\quad y=$

Auburn, Holy Name, Westboro

TEAM ROUND : Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM and ON THE SEPARATE TEAM ANSWER SHEET

1. A lucky year is one in which at least one date, when written in the form month / day / year, has the following property: the product of the month and the day equals the last two digits of the year. For example, 1956 is lucky because of $7 / 8 / 1956$. Which of the ten years 1990-1999 are (is) not lucky?
2. For how many values of x is this equation true? $(5+3) \div 4-x=(5+3) \div(4-x)$
3. How many positive integers less than 100 are the product of 2 or 3 consecutive integers?
4. Find the sum of this infinite seeries in $a+b i$ form. $(i=\sqrt{-1})$

$$
1+\frac{i}{2}+\frac{i^{2}}{4}+\frac{i^{3}}{8}+\frac{i^{4}}{16}+\ldots
$$

5. If $\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, what is A^{15} ?
6. If the vector from the origin to $(-5 \sqrt{3}, 5)$ is rotated 120° countercloskwise about the origin, then the resulting vector connects the origin to (a, b). Find the exact coordinates of (a, b).
7. A piece of wire 8 cm long is cut into three pieces so that they form the sides of a triangle. If all three pieces have integer lengths, what is the length of the shortest piece?
8. If i represents the imaginary unit, find the ordered pair of real numbers (x, y) for which $(2+2 i)^{9}=x+y i$.
9. Write the seventh term of $\left(x^{2}-\frac{1}{x}\right)^{9}$

Talia roun 2 nts eanh

1. 1994, 1997 $\begin{aligned} & \text { neal } \\ & \text { hotn }\end{aligned}$
2. 2 a two

ROUN II (7nt) 12002 alo 1

$$
(2 n t s) \text { 2. } 33 / 4 \text { ๓ } 3.75 \mathrm{~min} . \frac{15}{4} \mathrm{ck}
$$

$$
(3 n+s) \quad \text { 2. } \quad 1 \leq K \leq 4
$$

3. Il ar eleven

$\therefore\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
$O R-A$
$6 \quad(0,-10)$
4. 2 cm
5. $\quad(8192,8192$
matrinos

$$
\begin{aligned}
& \left(v_{n-c}\right) \quad y=-1, y=0 \\
& (2 n t s) \text { ? }\left[\begin{array}{ccc}
-2 & 3 & 1 \\
6 & -5 & 1 \\
0 & 7 & 1
\end{array}\right]=\left[\begin{array}{l}
-13 \\
-61 \\
-49
\end{array}\right]
\end{aligned}
$$

Round I

1. Try sum of primes $=3^{2}$ and seek smallest possible product. $2+7=9$ and $2 \cdot 7=14$.

Ans. 14
2. Sum is 555778885777.

Work backwards to find that
222223333555
$+\quad 333555552222$ works.

$$
\therefore x=5, y=4, z=3
$$

3.

$$
\begin{aligned}
& C_{1}=(10,6,3) \rightarrow c_{2}=(9,5,3,2) \rightarrow \\
& c_{3}=(8,4,4,2,1) \rightarrow c_{4}=(7,5,3,3,1) \rightarrow \\
& c_{5}=(6,5,4,32) \rightarrow C_{6}=(5,5,4,3,1,1) \rightarrow \\
& c_{7}=(6,4,4,3,2) \rightarrow c_{8}=(5,5,3,3,2,1) \rightarrow \\
& c_{9}=(6,4,4,2,2,1) \rightarrow c_{10}=(6,5,3,3,1,1) \rightarrow \\
& c_{11}=(6,5,4,2,2) \text { which }=c_{5} \text { and makes }
\end{aligned}
$$ the process periodic starting with C_{5} with period 6. $100-5=95$ and $95 \div 6=15 \frac{5}{6}$.

$$
\therefore C_{100}=C_{10}=(6,5,3,3,1,1)
$$

ROUND III

1. By "observation" $x=2002$ fits the n-pottern

$$
\text { or } \begin{aligned}
\frac{3 n}{n} & =\frac{4004+x}{x} \\
3 x & =4004+x \Rightarrow x=2002
\end{aligned}
$$

2. Let $t=$ time until they meet by together completing I rap.

$$
\begin{aligned}
& \frac{1}{6} t+\frac{1}{10} t=1 \\
& 5 t+3 t=30 \Rightarrow t=\frac{30}{8}=3 \frac{3}{4} \mathrm{~min}
\end{aligned}
$$

3.

$$
\begin{array}{c|c}
2-3 k \leq 2 k-3 & 2 k-3 \leq k+1 \\
5 \leq 5 k & k \leq 4 \\
1 \leq k &
\end{array}
$$

Combine as $1 \leq k \leq 4$

ROUND III

1. Digit sum ≤ 18, so number ≥ 75 and <93. Try then. Ans. 78
2. Work backwards

$$
\frac{21}{34}, \frac{13}{21}, \frac{8}{13}, \frac{5}{8}, \frac{3}{5}, \frac{2}{3}, \frac{1}{2}, 1\left(\frac{c}{1}\right)
$$

3. Area $=18.32=576=24^{2}$ so need 24×24 square. Work with 6 and 8 .

OR 180° rotation

Round IV

$$
\text { 1. } \begin{aligned}
d & =3 a \\
t_{18} & =t_{1}+17 d \\
& =x+17.3 a=x+51 a
\end{aligned}
$$

2.

$$
\begin{aligned}
& \frac{x+1}{2 x}=\frac{2 x}{2 x+3} \quad \begin{array}{l}
\text { becuusc of } \\
\text { canst. ratio }
\end{array} \\
& 2 x^{2}+5 x+3=4 x^{2} \\
& 0=2 x^{2}-5 x-3=(2 x+1)(x-3) \\
& x=-\frac{1}{2} \text { or } 3
\end{aligned}
$$

check this

$$
\text { on } n=2,1
$$

polynomial

$$
\begin{aligned}
& n^{2}+2(n+1)+n \\
= & n^{2}+3 n+2
\end{aligned}
$$

ROUND $\overline{\text { V }}$

1. $3 a+8=-7 \Rightarrow a=-5$

Check that $(-6)(-5)+4$ does $=34$
$2\left[\begin{array}{c}x+1+3 y \\ 4 x+4+3 y\end{array}\right]=\left[\begin{array}{c}3 x+3 \\ 3 y\end{array}\right]$
Equating elements gets

$$
\left\{\begin{array}{l}
3 y=2 x+2 \\
4 x+4=0
\end{array}\right\} \Rightarrow \begin{aligned}
& x=-1 \\
& y=0
\end{aligned}
$$

3. Using pts in circle equation gets

$$
\left\{\begin{aligned}
4+9-2 D+3 E+F & =0 \\
36+25+6 D-5 E+F & =0 \\
0+49+0+7 E+F & =0
\end{aligned}\right.
$$

Rearrange as

$$
\begin{aligned}
-20+3 E+F & =-13 \\
6 D-5 E+F & =-61 \\
O D+7 E+F & =-49
\end{aligned}
$$

Put numbers in the enatrices

TEAM ROUND

1. examples making lucky

$$
94=2 \cdot 47
$$

$10 / 9 / 90$	$5 / 19 / 95$	97 is prime	
$7 / 13 / 91$	$4 / 24 / 96$		$\therefore 1994$
$4 / 23 / 92$	$7 / 14 / 98$	\therefore	and 1997
$3 / 31 / 93$	$9 / 11 / 99$		

2.

$$
\begin{aligned}
& 2-x=\frac{8}{4-x} \\
& 8-6 x+x^{2}=8 \\
& x(x-6)=0
\end{aligned}
$$

$x=0$ a. 6
3. $1 \cdot 2=2 \quad 1 \cdot 2 \cdot 3=6$, bout

$$
\begin{aligned}
& 2 \cdot 3=6 \\
& 3 \cdot 4=12
\end{aligned} \leftarrow 2 \cdot 34=24
$$

$$
\begin{array}{ll}
3.4=12 & 3 \cdot 4 \cdot 5=60 \\
4.5=20
\end{array}
$$

$4.5=120$
$5.6=3 c_{1}$$\quad 4.5 .6$ too big
$t \cdot 7=42$
$7.8=56$
$8 \cdot 9=72$
$4 \cdot 10=90$
then too bia

TEAM ROUND cont.
4. $S_{\infty}=\frac{a}{1-r}=\frac{1}{1-\frac{i}{2}}=\left(\frac{2}{2-i}\right)\left(\frac{2+i}{2+i}\right)$

$$
=\frac{4+2 i}{4-i^{2}}=\frac{4}{5}+\frac{2}{5} i
$$

5. Easy with suitable calculator, but

$$
\begin{array}{ll}
A^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=-I & \\
A^{3}=-A & A_{15}
\end{array}=A_{3}
$$

6.

length

$$
\begin{aligned}
& =\sqrt{(-5 \sqrt{3})^{2}+5^{2}} \\
& =\sqrt{75+25} \\
& =10
\end{aligned}
$$

7. Sum of 3 pos integers to be 8 .

For sum of any tar $>$ third, cannot use 1 .
$2,3,3$ works.
Ans 2

8

$$
\begin{aligned}
(2+2 i)^{9} & =2^{9}(1+i)^{9} \\
& =512\left((1+i)^{2}\right)^{4}(1+i) \\
& =512(2 i)^{4}(1+i) \\
& =8192(1+i)
\end{aligned}
$$

Ans $(8192,8192)$
9. $\quad \frac{9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3}\left(x^{2}\right)^{3}\left(-\frac{1}{x}\right)^{6}$

$$
=84 x^{6}\left(\frac{1}{x^{6}}\right)
$$

$$
=84
$$

